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Abstract—Understanding hospital usage in each US county is
imperative for identifying characteristics of underserved commu-
nities and developing strategies to increase community well-being.
Numerous studies have found alcohol consumption and high
air pollution can have adverse effects on a population’s overall
health, and the usage of these substances is also affected by
socioeconomic factors such as household income. In this project,
we hypothesize that alcohol consumption and air pollution rates
along with socioeconomic factors can be key components in
predicting hospital usage by using the number of inpatient days
and outpatient visits per capita as regression target variables.
The purpose of this project is to use data from alternative data
sources for air pollution, alcohol consumption, and socioeconomic
factors to predict health markers for each county while analyzing
the correlation between these factors. By analyzing data on the
county level, we aim to derive regional patterns that may give
insight into over and under-burdened populations that may be
potentially lost by generalizing to a state or national level. We find
that the best features are measures of demographics, healthcare
facility characteristics, and alcohol consumption. Additionally,
the latitude and longitude coordinates of a county has predictive
performance which further emphasizes regional importance for
predicting hospital rates. Our highest performing model, XG-
Boost Regressor, achieved 0.719 R2 and 0.219 R2 for inpatient
and outpatient prediction respectively. We find that alternative
data sources, particularly alcohol consumption, are beneficial for
predicting county-level hospital rates.

Index Terms—counties, alcohol, socioeconomic, air pollution,
hospital, predictive analytics

I. INTRODUCTION

Inefficiencies in hospital resource planning and strategy
are one of the largest sources of healthcare costs in the
United States. Triage systems frequently can be backed up
due to under-staffing, surging medical cases, and lack of beds
which directly affect the level of care patients will receive.
Therefore, reducing healthcare costs is critical for providing
better healthcare as approximately 25% of annual United
States healthcare spending is wasted to factors such as low-
value care, administrative complexity, and fraud [1]. As access
to healthcare directly affects every individual in the United
States, it is pertinent for health providers and legislative bodies

to have an understanding of the factors that influence inpatient
and outpatient hospitalization rates across the United States
so they can mitigate healthcare costs to better serve their
communities.

In this paper, we research the effect of using alternative
data sources, such as air pollution, alcohol consumption, and
demographic information, to predict inpatient days per capita
and outpatient visits per capita in U.S. counties from 2006-
2016. By associating healthcare at the county level, we are
able to create a localized understanding of healthcare across
the United States and potentially find correlations in different
regions of the country. We plan to investigate the following
research questions:

RQ1 Can alternative data sources be used for predicting
inpatient and outpatient hospitalization rates?

RQ2 Which set of features are most important for pre-
dicting inpatient and outpatient hospitalization rates,
and how much do these two sets differ?

II. RELATED WORK

Previous work has utilized cohort studies of U.S. health
plan claims for predicting inpatient hospitalizations [2], but
have not explored regional populations as separate entities.
There is powerful evidence, covered by multiple studies, that
indicates the negative effects of alcohol on health factors.
The negative effects include degrading cognitive function [3],
declining skeletal system [4], effect on the digestive system
[5] (specifically the gastrointestinal tract), and effect on the
respiratory [6] and circulatory system [7].

Therefore, alcohol is negatively correlated with health mea-
sures collected at hospitals. A study done by Reuter et al. [8],
shows that there was a dramatic drop in patient numbers when
alcohol sales were prohibited in African states in 2019.

Similar to alcohol, air pollution also has a high impact
on health measures. The research done by Manan et al. [9],
indicates that air pollution levels, such as ozone (O3), carbon
monoxide (CO), nitrogen dioxide (NO2), and sulpher dioxide



(SO2), are associated with an increasing trend of hospital
admission.

Although big data analytics has been used for U.S hospitals
[10], our project aims to use the strong correlation between
alcohol, air pollution, and their negative effects to make
predictions. We use alcohol, demographic information, and
air pollution to make predictions for hospital data, such as
the number of patients, on a county level.

III. DATA UNDERSTANDING

Fig. 1. A heat map depicting the variation of the number of inpatients per
capita for county data.

Fig. 2. A heat map depicting the variation of the number of outpatients per
capita for county data.

A. AHRF Dataset

The Area Health Resources Files (AHRF) dataset contains
county-level demographics, insurance coverage, healthcare

Fig. 3. A heat map depicting the variation of the amount of ethanol consumed
per capita for county data.

Fig. 4. A heat map depicting the AQI for CO, O3, SO2 and NO2 for county
data.

supply and demand, and healthcare infrastructure information
per year [11]. The dataset also contains opioid and prescription
information from 2006-2014, but we omit these features in
favor of extending the year coverage to 2006-2016.

B. Alcohol Consumption Dataset

The alcohol consumption dataset contains state-level, per
capita measurements of ethanol, beer, wine, and liquor con-
sumption from 1977-2018 [12]. As this data is collected on
the state-level, we replicate these columns for all counties in
a given state.

C. Air Pollution Dataset

The time series air pollution dataset contains air sensory
information measuring four primary pollutants (i.e., Nitrogen



Dioxide, Sulphur Dioxide, Carbon Monoxide, and Ozone) in
United States counties from 2000-20161. The air pollution data
is at a county level, but has missing counties compared to the
AHRF dataset.

D. U.S. County Latitude and Longitude

The dataset contains latitude and longitude coordinates for
U.S. counties2.

E. Data Exploration

Analyzing the Figs. 1 to 4, we can see that alternative data
sources, ethanol, and air pollution, have a very high correlation
to inpatient and outpatient data. The most important findings
are as follows:

• The Central region consisting of Counties from Texas,
Kansas, North and South Dakota, seem to have counties
with the highest number of inpatients and outpatients per
capita. These areas are also associated with the highest
levels of ethanol consumption and air pollution.
– Pawnee county in Kansas, has the highest inpatients

per capita. We can observe that the area is one of the
most affected by air pollution by CO, O3, and NO2.

• South West region, including Navada, Utah, Arizona and
California, do not seem to follow the hypothesis. They
have lower to mid level ethanol consumption, but very
high levels of CO, O3, SO2, and NO2. These areas also
have low inpatient and outpatient numbers.

• Eastern region, such as counties in Pennsylvania, New
York, New Jersey, Massachusetts, etc., also show a
positive correlation. These areas have low numbers of
inpatients and outpatients, and also have a low number
of Ethanol consumption and air pollution.
– Montour, in Penssylvania has a very high number of

inpatients (122.4) per capita and outpatients(533.8) per
capita. We can observe that the O3, SO2, and NO2

levels are higher in the area.

IV. DATA PREPARATION

A. Geographical Imputation Strategy

As our datasets are regionally dependent, we leverage
this locality to impute our missing features. Typical distance
metrics, such as Euclidean and Minkowski distance, are not
appropriate as latitude and longitude coordinates are not in
vector space as seen in Fig. 5 — in reference to this page3. We
instead recognize that since latitude and longitude coordinates
are angles on Earth, a roughly spherical surface, then we can
leverage this fact to use a distance metric called the haversine
formula4 to determine distances between U.S. counties from
their latitudinal and longitudinal positions. The haversine
formula is rooted in navigation and finds the distance between
two latitude and longitude coordinates, p0 = (ϕ0, λ0) and

1https://data.world/data-society/us-air-pollution-data
2https://simplemaps.com/data/us-counties
3https://en.wikipedia.org/wiki/Geographic coordinate system
4https://en.wikipedia.org/wiki/Haversine formula

Fig. 5. An overview of how latitude ϕ and longitude λ coordinates are used
to point to positions on a spherical surface.

p1 = (ϕ1, λ1), by the length of the arc on the surface of
the sphere between them. The haversine distance d is defined
as:

d = 2r arcsin
√
h (1)

where r is the radius of the sphere and h is the haversine
formula given by

h = sin2
(
ϕrad
1 − ϕrad

0

2

)
+ cosϕrad

0 · cosϕrad
1 · sin2

(
λrad
1 − λrad

0

2

)
with ϕrad

i = π
180ϕi and λrad

i = π
180λi being the latitude and

longitude coordinates in radians respectively.
For imputation, we first find the longitude and latitude

coordinates for every county using the U.S. County Latitude
and Longitude dataset. Then, we iterate over each year and
every county to locate either counties with a few missing
features or counties missing entirely. For any unobserved
feature in a county, we find the k = 3 closest counties that
have observed the feature, given by the haversine distance, and
average their values to impute the missing value. It is important
to note that our missing values reside only in the air pollution
dataset and are all continuous. Therefore, we believe that we
can impute these values with sufficient accuracy.

B. Dataset Preprocessing

For preprocessing the AHRF dataset, we drop all correlated
features that are dependent on other features, and features that
contain uninterpretable processing codes. In the air pollution
dataset, we aggregate the air sensor measurements and average
them in order to properly merge with the other datasets. The
air pollution data is aggregated for each year to match the other
data. The alcohol consumption dataset contained alcohol data
at the state level. Thus, this data was generalized to all the
counties within a state. Finally, we manually standardize the
county names in each dataset to match the format of the county
latitude and longitude table so we can join them together.

C. Dataset Merging

For each of our three individual datasets, we merge them on
the shared state, county, and year columns. We encode the state
column using one-hot encoding, and add the state abbreviation



as a prefix to the county column before also one-hot encoding
it to remove false relations between shared county names
in different states. The merged dataset also contains a non-
uniform number of observed counties across each dataset and
even in different years of a given dataset. We use the union
of counties in the merged dataset to maximize the number of
rows in the final data set, and use our geographical imputation
strategy for filling in the missing values.

Next, we drop highly correlated features by using the
absolute value of the Pearson correlation coefficient r between
all pairs of features:

r =

∣∣∣∣∣
∑

(pi − p̄)(qi − q̄)√∑
(pi − p̄)2(qi − q̄)2

∣∣∣∣∣ (2)

where pi, qi are features of the i-th sample and p̄, q̄ are the
mean of the features across the entire dataset. We construct
an upper triangular correlation matrix from the N features in
our dataset and drop all features with r ≥ 0.95. Then, we
randomly split the merged dataset into 80% train and 20%
test.

After getting our dataset splits, we use min-max scaling to
standardize the scale of our features. For each feature Xi, we
scale it to a new value X ′

i by computing the following:

X ′
i =

Xi −Xmin

Xmax −Xmin
· (Xmax −Xmin) +Xmin (3)

where Xmin is the smallest value of the feature column in
the training dataset split and Xmax is the largest value of
the feature column in the training dataset split. Note that we
compute the minimum and maximum values from the training
data in Eq. (3), but we scale the features in both the training
and test dataset set splits to avoid data leakage.

We establish our data as a simple regression problem rather
than a time series forecasting problem due to a lack of county
level data — if we were to establish a forecast for every
U.S. county, then we would have 3140 datasets with 11
samples each. Instead, we aim to let a model learn from shared
characteristics of U.S. counties with the intuition this will help
predictive performance.

D. Feature Selection

Prior to model fitting, we rank each feature by calculating
its information gain for predicting both the inpatient and
outpatient continuous rates. Information gain is a metric used
primarily in decision trees that measure the signal of one
random variable for observing another random variable

IG(S) = E[− log p(A)]− E[− log p(A|S))] (4)

with feature S and target column A. We then create two new
datasets for each of the regression tasks by selecting the the
top 10% of features, or the 90th percentile, according to each
task’s feature ranking. To avoid data leakage we only rank
the features based on the train data and then apply the set of
selected features to both the train and test datasets for each
task, and a complete summary of the top ranked features can
be found in Figs. 6 and 7.

Rank Feature Info Gain
1 # of licensed nursing home beds 0.273
2 # of male medical doctors 0.246
3 # of nurse practitioners 0.237
4 # of dually eligible medicare and medicaid 0.214
5 population estimate 0.204
6 veteran population estimate 0.180
7 # of home health agencies 0.175
8 asian male population estimate 0.155
9 # of hospices 0.155

10 hispanic male population estimate 0.136
11 black male population estimate 0.122
12 # of long-term hospital beds 0.118
13 # of short-term hospital beds 0.106
14 ethanol beer gallons per capita 0.094
15 ethanol wine gallons per capita 0.086
16 health profession shortage area whole county 0.086
17 rural county 0.084
18 % of population over age 25 with 4 year college degree 0.083
19 ethanol spirit gallons per capita 0.080
20 % of population black 0.075
21 longitude 0.073
22 SO2 mean 0.072
23 ethanol all drinks gallons per capita 0.070
24 nonmetro county 0.063
25 O3 max hour 0.053

Fig. 6. A summary of the top 25 ranked inpatient features along with
their information gain. We find that demographics and healthcare facility
characteristics are the most informative features which are closely followed
by alcohol consumption ones.

Ranking Feature Info Gain
1 # of male medical doctors 0.162
2 veteran population estimate 0.141
3 population estimate 0.136
4 ethanol wine gallons per capita 0.131
5 # of nurse practitioners 0.122
6 ethanol all drinks gallons per capita 0.118
7 ethanol spirit gallons per capita 0.118
8 # of home health agencies 0.117
9 # of hospices 0.116

10 # of licensed nursing home beds 0.115
11 # of dually eligible medicare and medicaid 0.114
12 ethanol beer gallons per capita 0.107
13 asian male population estimate 0.102
14 health profession shortage area whole county 0.075
15 black male population estimate 0.086
16 hispanic male population estimate 0.084
17 % of population black 0.068
18 latitude 0.067
19 health profession shortage area part of county 0.063
20 CO max hour 0.053
21 actual per capita medicare cost 0.052
22 % of population over age 25 with 4 year college 0.052
23 % rural county 0.052
24 % of population under 65 0.050
25 SO2 max hour 0.045

Fig. 7. A summary of the 25 ranked outpatient features along with their infor-
mation gain. We find that alcohol consumption features are very informative
along with healthcare facility characteristics and demographics.



We also utilize SVD for understanding the hidden concepts
in our merged dataset and found that there is one singular
value that retains 99% of the total energy in the singular value
matrix Σ. We avoid using this to reduce the dimensionality of
our dataset, however, because we do not want to reduce our
data to a single dimension.

V. REGRESSION MODELS

A. Linear Regression

Linear regression is a well-known model for predicting a
continuous target variable from a linear combination of feature
variables. The model is defined as yi = x⊺

iβ+ ϵi where yi is
the continuous target variable, x⊺

i is the vector of numerical
features, β is the vector of coefficients learned by the model,
and ϵi is the irreducible noise for sample i. We aim to reduce
the mean squared error (MSE) for linear regression in order
to learn the coefficient vector which is defined as:

Lmse =
1

N
∥y − ŷ∥2 (5)

where N is the the number of samples in our dataset split, y
is the observed or ground truth values, and ŷi is the predicted
values from our regression model.

B. Lasso Regression

Lasso regression is an extension of linear regression that
aims to improve generalizability by preventing the model from
overfitting the training data. We extend Eq. (5) with a L1

regularization penalty:

Llasso = Lmse + λ∥β∥1 (6)

where λ is a hyperparameter coefficient controlling the penal-
ization strength.

C. Ridge Regression

Similarly, ridge regression extends Eq. (5) with a L2 regu-
larization penalty:

Lridge = Lmse + λ∥β∥2 (7)

where λ is the same hyperparameter from Eq. (6).

D. Elastic Net Regression

The Elastic Net regression model improves on linear regres-
sion by utilizing both L1 and L2 regularization as a penalty:

Lelastic = Lmse +
λ(1− α)

2
∥β∥2 + λα∥β∥1 (8)

where λ is the regularization penalization strength, and α
controls the weight of importance between the L1 and L2

penalty.

E. k-NN Regression

Unlike the linear regression-based models, k-NN regression
is a non-parametric machine learning model that uses the
inverse distance of the k nearest feature vectors as a weighted
average for predicting a continuous target value. We use
∥p−q∥2 for calculating distance between two feature vectors
p and q.

F. Random Forest Regression

Random forest regression is a type of ensemble machine
learning method that combines decision tree models such that
each tree is trained on a different subset of the training data.
During the training process, the model randomly selects a
subset of the features to consider when making predictions at
each node in the tree. When making predictions, the random
forest model aggregates the predictions of all of the decision
trees, and the final prediction is the average of the predictions
of all the trees. This can lead to more accurate predictions than
a single decision tree, as the random forest model is able to
capture a wider range of relationships in the data. In our case,
the decision trees are used to predict the continuous target
variables for inpatient and outpatient rates.

G. XGBoost Regression

Similarily to Random Forest Regression, XGBoost Regres-
sion works by building an ensemble of decision tree models
and it uses a more efficient method for training the decision
trees, called gradient boosting, which involves training each
tree on the residual errors of the previous tree. This allows
the model to learn complex non-linear relationships in the data
and make more accurate predictions, and is very popular for
tabular datasets.

VI. EXPERIMENTS

A. Metrics

We utilize two different metrics for evaluating our regres-
sion models. We use MSE defined in Eq. (5) to assess the error
of each estimator where an MSE of zero indicates the estimator
perfectly predicts our target values and a MSE greater than
zero indicates imperfect predictions with a larger MSE being
worse. Additionally, we record the coefficient of determination
(R2) for each model. This metric measures the proportion of
the variance in the target that is predictable from the features.
An R2 of one means the model perfectly measures the variance
of the target, an R2 of zero means the model performs no
better than just guessing the mean of the target values, and an
R2 of less than zero means the model performs worse than
guessing the mean of the target values where a larger negative
values is a worse estimator.

B. Modelling

In each experiment, we choose a regression-based model
and a feature selection threshold to train with 10-fold cross
validation for hyperparameter tuning on just the train data.
Then we train and evaluate our models on using split validation
with the train and test datasets, and we record the MSE and
R2 on the test data set as seen in Fig. 8. We find that the
models predict inpatient days per capita much better than
outpatient visits per capita with tree-based models performing
the best. Another notable finding is that having a stricter
feature selection threshold resulted in the best models. This
point indicates that the 99th percentile of feature (i.e., the top
1% of features or top 32 ranked features by information gain)
are the most critical for predictions.



Threshold Inpatient Outpatient
MSE R2 MSE R2

Linear Regression
0.90 7.039 · 1024 −6.000 · 1024 7.620 · 1026 −6.677 · 1025
0.95 6.154 · 1017 −5.246 · 1017 2.152 · 1024 −1.886 · 1023
0.99 0.970 0.174 9.946 0.129

Ridge Regression
0.90 0.959 0.182 9.964 0.127
0.95 0.959 0.182 9.907 0.132
0.99 0.979 0.166 10.083 0.117

Lasso Regression
0.90 1.174 -0.001 11.424 -0.001
0.95 1.174 -0.001 11.424 -0.001
0.99 1.174 -0.001 11.424 -0.001

Elastic Net Regression
0.90 1.174 -0.001 11.424 -0.001
0.95 1.174 -0.001 11.424 -0.001
0.99 1.174 -0.001 11.424 -0.001

k-NN Regression
0.90 1.144 0.024 12.196 -0.069
0.95 1.136 0.032 12.196 -0.069
0.99 1.164 0.008 12.329 -0.080

Random Forest Regression
0.90 0.420 0.642 10.406 0.088
0.95 0.432 0.632 10.557 0.075
0.99 0.399 0.660 9.621 0.157

XGBoost Regressor
0.90 0.333 0.716 9.382 0.178
0.95 0.336 0.713 9.310 0.184
0.99 0.330 0.719 8.919 0.219

Fig. 8. Experimental results of the seven regression models we utilized in
our experiments along with their corresponding feature selection percentile
threshold, and mean squared error (MSE) and R2 for both the inpatient and
outpatient target values.

VII. DISCUSSION

We observe several things from our experimental results.
Primarily, we notice that inpatient achieves about 50% higher
R2 in the best performing model, XGBoost Regressor, which
we believe is a result of a combination of the following:

• Inpatients are subject to more severe diseases that require
constant hospital monitoring — such as lung cancer from
air pollution or alcoholic hepatitis. Therefore, datasets
that capture predictors of severe disease will make it
easier to predict inpatient target values.

• Inpatients are correlated with health facility character-
istics. For instance, counties with trauma centers will
service a higher number of long term injuries so we
assume models can extrapolate these features such that
these counties have a higher inpatient visitation rate than
counties without as establish health facilities.

• Outpatients have a much larger domain of potential
causes and reasons to visit which is harder to capture
in datasets. Although we notice that alcohol consumption
features, even at state level, are beneficial as evidenced by
their relative feature ranking in Fig. 7. Our intuition here
is that alcohol is a common cause of a lot of outpatient
visits due to its accessibility and cultural significance in
the United States.

During feature selection, we found out the ranking of the
features based on information gain to answer RQ2. It seems
that demographic and hospital information had the highest
rankings with alcohol also being a strong feature (more so
in outpatient prediction). We notice that air pollution is not
ranked highly at all, which slightly refutes RQ1 that air
pollution can be beneficial for predicting our target values.

VIII. CONCLUSION

In this paper, we outline the importance of predicting
hospitalization usage rates for combating inefficient and in-
adequate healthcare in the United States. We discuss our
geographical imputation strategy for filling in missing data

that is geographically dependent where nuances can be lost
by taking simple aggregations over the entire population of
data. From our information gain feature ranking, we find
that population demographic and health facility characteristic
features are the most informative for making predictions for
inpatient and outpatient hospitalization rates. Additionally, the
latitude and longitude coordinates of counties, and the total
gallons of alcohol consumed of states also capture some of
the signal for the target regression variables. The county air
pollution rates do not seem to contribute to the hospitalization
rates consistently. Our experimentation shows that XGBoost
regression model outperforms linear regression based models
with Random Forest regression being a close second. We also
conclude that predicting inpatients using these features is more
advantageous than predicting outpatients, because of the non-
specificity of outpatient features and high informativeness of
features for inpatient prediction.
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